Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
1.
Foods ; 13(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611281

RESUMO

The term Conjugated Linoleic Acid (CLA) refers generically to a class of positional and geometric conjugated dienoic isomers of linoleic acid. Among the isomers of linoleic acid cis9, trans11-CLA (c9, t11-CLA) and trans10, cis12-CLA (t10, c12-CLA) are found to be biologically active isomers, and they occur naturally in milk, dairy products and meat from ruminants. In addition, some vegetables and some seafoods have also been reported to contain CLA. Although the CLA levels in these natural sources are insufficient to confer the essential health benefits, anti-carcinogenic or anti-cancer effects are of current interest. In the rumen, CLA is an intermediate of isomerization and the biohydrogenation process of linoleic acid to stearic acid conducted by ruminal microorganisms. In addition to rumen bacteria, some other bacteria, such as Propionibacterium, Bifidobacterium and some lactic acid bacteria (LAB) are also capable of producing CLA. In this regard, Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) has demonstrated the ability to produce CLA isomers from linoleic acid by multiple enzymatic activities, including hydration, dehydration, and isomerization. L. plantarum is one of the most versatile species of LAB and the bacterium is widely used in the food industry as a microbial food culture. Thus, in this review we critically analyzed the literature produced in the last ten years with the aim to highlight the potentiality as well as the optimal conditions for CLA production by L. plantarum. Evidence was provided suggesting that the use of appropriate strains of L. plantarum, as a starter or additional culture in the production of some fermented foods, can be considered a critical factor in the design of new CLA-enriched functional foods.

2.
Lasers Med Sci ; 39(1): 99, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602564

RESUMO

In recent years, there has been a growing interest in traditional medicinal practices such as Ayurveda, which emphasizes the use of natural ingredients for various therapeutic purposes. Vegetable oils are an integral part of our diet and have several applications in the cosmetics and healthcare industries. These oils have also been prescribed in ancient Ayurveda texts to treat various health problems. Ayurveda prescribes a processing technique called 'Murchana' to improve the therapeutic nature of the oils. Spectroscopic techniques have been used for quality assessment in many fields. High sensitivity and a low detection rate make spectroscopy a formidable analytical technique. This study focusses on the spectroscopic analysis of sesame and mustard oils prepared using the ayurvedic processing method 'Murchana'. Spectroscopic analysis techniques including UV-Vis absorbance spectroscopy, fluorescence spectroscopy, and FTIR spectroscopy were employed to study the oils. Origin software was used to plot graphs of the spectra. The results indicated that the murchana process may reduce the components of the oil responsible for its oxidation, thereby increasing the shelf life of the oils. However, further investigations, including other spectroscopy and chromatography techniques, will prove beneficial in ascertaining the effects of the murchana process on vegetable oils. The study's findings also suggest that spectroscopic techniques can be used to supplement chemical techniques to investigate the characteristics of vegetable oils.


Assuntos
Mostardeira , Sesamum , Óleos de Plantas , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Talanta ; 274: 125939, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38547838

RESUMO

A new simple, fast and environmentally friendly deep eutectic solvent based dispersive liquid-liquid microextraction (DES-based DLLME) methodology assisted by vortex is presented for the separation and preconcentration of three elements (i.e., Fe, Cu and Pb) from edible oil samples (i.e., soybean, sunflower, rapeseed, sesame, and olive oil) prior to the determination by microwave-induced plasma optical emission spectrometry (MIP-OES). The deep eutectic solvent selected as extractant (i.e., choline chloride and ethylene glycol, 1:2) is synthesized and characterized by Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy (1H NMR) and differential scanning calorimetry (DSC), and the extraction conditions are optimized by a two steps experimental design. Under the optimum extraction conditions (i.e., diluted sample weight: 8.6 g; DES volume: 100 µL; extraction time: 1 min; centrifugation time and speed: 3 min and 3000 rpm; and dispersion system: vortex) the analytical method presents excellent linearity (i.e., R2 values higher than 0.99) in the range 10-500 µg kg-1, repeatability (i.e., CV values lower than 9.2%), and limits of detection (LOD) values of 3, 2 and 0.7 µg kg-1 for Pb, Fe and Cu, respectively. None of the analytes displayed amounts over the upper limit permitted by law, and recovery values of all analytes evaluated in the different samples using external standard calibration were close to 100%, which excludes significant matrix effects. Finally, AGREEprep metric has been used to evaluate the method greenness (final score of 0.47) and it has been compared successfully with previous publications for the same type of analytes and matrices.

4.
Sci Total Environ ; 918: 170448, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38301774

RESUMO

In the past decade, there has been a significant rise in sustainable biomass based biofuel production to address energy needs while mitigating environmental impacts. Traditionally, bioethanol was used for biofuel production, but concerns over food security and environmental preservation have led to growing interest in alternative sources such as neutral lipids from vegetable oil and microalgae for biodiesel production. This research paper evaluates the potential of various oleaginous plants and microalgae as feedstocks for biodiesel production, with a focus on their fatty acid composition and its impact on biodiesel properties. The study examines the fatty acid profiles of 43 different plant and microalgae species and employs various equations to estimate key physical properties of biodiesel. Additionally, the communication compares these properties to International Biodiesel Standards (EN 14214 and ASTM D6751-08) to assess the suitability of the derived biodiesel for commercial use. It is impossible to describe a single composition that is optimal in terms of all essential fuel properties due to the opposing effects of some structural features of the Fatty Acid Methyl Esters (FAME). However, biodiesel should contain relatively low concentrations of both long chain saturated and polyunsaturated FAME to ensure adequate efficiency in terms of low temperature operability and oxidative stability. The results reveal significant variations in properties amongst different feedstocks, highlighting the importance of feedstock selection in biodiesel production. The study also establishes correlations between various fuel properties, providing valuable insights in to optimizing biodiesel production processes, which will be of great use to researchers, engineers, and stakeholders involved in biodiesel production.


Assuntos
Ácidos Graxos , Microalgas , Ácidos Graxos/química , Biocombustíveis , Óleos de Plantas/química , Temperatura Baixa , Biomassa
5.
Heliyon ; 10(2): e23978, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38298691

RESUMO

This paper aims to highlight the use of different heat transfer fluid (HTF) configurations based on vegetable oils in Parabolic Trough Solar Concentrator (PTSC). Rapeseed and jatropha oils as innovative heat transfer materials combined with SiO2 and Al2O3 to obtain six (6) HTF configurations are used in a 1-dimensional PTSC model. The thermophysical properties of the nanofluids are determined from correlations derived from the literature, using Gauss-Seidel method from a numerical code developed in Matlab software. Model validation is obtained. Thermal sensitivity analysis shows that the use of rapeseed increases the thermal efficiency of the PTSC by around 4.21 % compared with jatropha. The use of nanofluids reduces thermal losses within the system due to thermal gradients. For a fixed irradiance and each 1 %-4 % increase in volume fraction, thermal efficiency increases by around 1.96 % when Al2O3/rapeseed is used and by 0.47 % when SiO2/rapeseed is used compared with rapeseed. Similarly, thermal efficiency increases by around 1.98 % when Al2O3/jatropha is used and decreases by around 0.20 % when SiO2/jatropha is used compared with jatropha. However, the positive effects of nanoparticles on thermal conductivity alone are not always sufficient to improve thermal efficiency, and thermal effects on heat capacity should also be considered.

6.
Food Chem ; 442: 138492, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38245986

RESUMO

In this work, we propose a novel approach for extracting Cu and Ni from vegetable oils (which can be expanded to other metals). The method is based on the transference of the analytes to an aqueous acid phase due to the disruption of a three-component solution. The extraction was carried out in two steps. In the first step, a three-component solution was prepared comprising the sample, 1-octanol, and HNO3 solution. Next, the homogeneous system was disrupted by adding 1.0 mL of deionized water, and two phases were formed. The aqueous extract deposited in the bottom of the flask was collected with a micropipette, and Cu and Ni were determined by graphite furnace atomic absorption spectrometry (GF AAS). The developed method presented limits of quantification (LOQ) of 0.25 and 0.17 ng g-1 for Cu and Ni, respectively, and was successfully applied in the analysis of eleven oil samples from different origins.


Assuntos
Grafite , Óleos de Plantas , Óleos de Plantas/química , Grafite/química , Espectrofotometria Atômica/métodos , Água/química
7.
Foods ; 13(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38254484

RESUMO

Currently, the combination of fingerprinting methodology and environmentally friendly and economical analytical instrumentation is becoming increasingly relevant in the food sector. In this study, a highly versatile portable analyser based on Spatially Offset Raman Spectroscopy (SORS) obtained fingerprints of edible vegetable oils (sunflower and olive oils), and the capability of such fingerprints (obtained quickly, reliably and without any sample treatment) to discriminate/classify the analysed samples was evaluated. After data treatment, not only unsupervised pattern recognition techniques (as HCA and PCA), but also supervised pattern recognition techniques (such as SVM, kNN and SIMCA), showed that the main effect on discrimination/classification was associated with those regions of the Raman fingerprint related to free fatty acid content, especially oleic and linoleic acid. These facts allowed the discernment of the original raw material used in the oil's production. In all the models established, reliable qualimetric parameters were obtained.

8.
BMC Public Health ; 24(1): 218, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238752

RESUMO

In this study, potential toxic element (PTEs) including lead (Pb), arsenic (As), cadmium(Cd), iron (Fe) and zinc (Zn) in traditional and industrial edible vegetable oils (peanut, sunflower, olive and sesame) collected from Hamadan, west of Iran were determined using Inductivity Coupled Plasma Optical Emission Spectrometry (ICP-OES). Besides, probabilistic health risk assessment (non-carcinogenic and carcinogenic risks) was identified via total target hazard quotient (TTHQ) and cancer risk (CR) by the Monte Carlo Simulation (MCS) model. The ranking of concentration PTEs in traditional and industrial edible vegetable oils was Fe > Zn > As > Pb > Cd. The in all samples, content of PTEs in industrial oils were upper than traditional oils (p < 0.001). The level of PTEs in most of vegetable oils was lower than permissible concentration regulated by Codex and national standard. In term of non-carcinogenic, consumers were at acceptable range (TTHQ < 1) due to ingestion both traditional and industrial vegetable oils content of PTEs. In term of carcinogenic, CR the both adults and children was higher than acceptable range (CR < 1E-6), Hence consumer are at unacceptable risk due to ingestion industrial vegetable oils content of inorganic As. Therefore, it is recommended to implement control plans for PTEs in vegetable oils consumed in Hamadan, Iran.


Assuntos
Arsênio , Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Cádmio/toxicidade , Cádmio/análise , Óleos de Plantas/análise , Óleos de Plantas/química , Verduras , Irã (Geográfico) , Chumbo/análise , Arsênio/toxicidade , Arsênio/análise , Zinco , Carcinógenos , Medição de Risco , Metais Pesados/análise , Monitoramento Ambiental/métodos , Poluentes do Solo/análise
9.
Food Chem ; 439: 138059, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039608

RESUMO

Lipids are widespread in nature and play a pivotal role as a source of energy and nutrition for the human body. Vegetable oils (VOs) constitute a significant category in the food industry, containing various lipid components that have garnered attention for being natural, environmentally friendly and health-promoting. The review presented the classification of raw materials (RMs) from oil crops and quality analysis techniques of VOs, with the aim of improving comprehension and facilitating in-depth research of VOs. Brief descriptions were provided for four categories of VOs, and quality analysis techniques for both RMs and VOs were generalized. Furthermore, this study discussed the applications of lipidomics technology in component analysis, processing and utilization, quality determination, as well as nutritional function assessment of VOs. Through reviewing RMs and quality analysis techniques of VOs, this study aims to encourage further refinement and development in the processing and utilization of VOs, offering valuable references for theoretical and applied research in food chemistry and food science.


Assuntos
Lipidômica , Óleos de Plantas , Humanos , Valor Nutritivo , Alimentos
10.
Int J Biol Macromol ; 257(Pt 2): 128674, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070799

RESUMO

This study introduces a novel biobased textile finishing agent synthesized as waterborne polyurethane dispersions (FCCB-WPUDs), utilizing bio-based monomers like fenugreek oil-based polyol, corn oil-derived emulsifier, and cellulose acetate butyrate (CAB) chain extender. The FCCB-WPUDs were prepared through the prepolymer polymerization method and characterized using FTIR, TGA, DMA, SEM, DLS, and swelling tests. Their application to poly-cotton fabrics significantly improved various fabric properties. The enhancements included increased washing fastness (from 3/4 ± 0.01 to 4 ± 0.02 for dyed and 3 ± 0.02 to 4/5 ± 0.02 for printed fabrics), rubbing fastness (from 3 ± 0.02 to 4/5 ± 0.03 for dyed and 4 ± 0.02 to 4/5 ± 0.03 for printed fabrics), and perspiration fastness (from 3 ± 0.02 to 4 ± 0.03 for acidic dyed and 3/4 ± 0.02 to 4 ± 0.02 for alkaline printed fabrics). Additionally, tear strengths improved significantly (from 13.66 ± 0.04 N/m to 20.53 ± 0.06 N/m for warp dyed and 10.85 ± 0.06 N/m to 15.14 ± 0.06 N/m for warp printed fabrics), along with tensile strengths (from 327 ± 5.38 N/m to 361 ± 3.26 N/m for warp dyed and 357 ± 5.34 N/m to 449 ± 4.90 N/m for warp printed fabrics). These improvements correlated with increasing CAB moles as a chain extender. This research presents a cost-effective and simple biobased method for textile finishing, offering an alternative to petrochemical-based monomers in conventional WPUD preparation.


Assuntos
Fibra de Algodão , Poliuretanos , Têxteis , Corantes , Polimerização
11.
J Sci Food Agric ; 104(6): 3352-3360, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38105416

RESUMO

BACKGROUND: Omega-3 fatty acids are known for their various health benefits. Chia is the richest vegetable source of omega-3 fatty acids. However, its oil is highly susceptible to oxidative deterioration and should be protected for incorporation into food matrices. This work aimed to study the incorporation of different chia oil microcapsules in a powdered beverage, analyzing the effect on the physicochemical characteristics and stability during storage. RESULTS: Different types of microcapsules were obtained: monolayer microcapsules using sodium caseinate and lactose as wall material, and multilayer microcapsules produced through electrostatic deposition using lecithins, chitosan, and chia mucilage as the first, second, and third layers, respectively. The results demonstrated an efficient enrichment of smoothies, with omega-3 fatty acid values ranging from 24.09% to 42.73%, while the original food matrix powder lacked this component. These powder beverages exhibited low moisture content (≤ 2.91%) and low water activity (≤ 0.39). The aerated, packed density and compressibility assays indicated that adding microcapsules made the powders less dense and compressible. The color of the original powdered beverage was not modified. The dispersibility reflected an acceptable instantaneity, reaching the maximum obscuration after 30 s of stirring. The solubility of all the enriched products was higher than 70%, whereas the pH was ~6.8. The contact angle between the powder and liquid indicated an excellent ability to be reconstituted in water. The analysis of the glass transition temperature showed that the storage temperature (25 °C) was adequate. The peroxide value of all the products was low throughout the storage (≤ 1.63 meq peroxide kg-1 of oil at 90 days at 25 ± 2 °C), thus maintaining the quality of the microencapsulated chia oil. CONCLUSIONS: The results suggest that incorporating the monolayer and multilayer chia oil microcapsules that were studied could be a viable strategy for enriching smoothies with the omega-3 fatty acids present in chia seed oil. © 2023 Society of Chemical Industry.


Assuntos
Ácidos Graxos Ômega-3 , Extratos Vegetais , Salvia hispanica , Salvia , Salvia/química , Frutas/química , Ácidos Graxos Ômega-3/química , Cápsulas , Pós , Óleos de Plantas/química , Bebidas/análise , Água , Peróxidos , Ácidos Graxos
12.
Mycotoxin Res ; 40(1): 45-70, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38133731

RESUMO

Mycotoxins in agricultural commodities have always been a concern due to their negative impacts on human and livestock health. Issues associated with quality control, hot and humid climate, improper storage, and inappropriate production can support the development of fungus, causing oil crops to suffer from mycotoxin contamination, which in turn migrates to the resulting oil, de-oiled cake and meals during the oil processing. Related research which supports the development of multi-mycotoxin prevention programs has resulted in satisfactory mitigation effects, mainly in the pre-harvest stage. Nevertheless, preventive actions are unlikely to avoid the occurrence of mycotoxins completely, so removal strategies may still be necessary to protect consumers. Elimination of mycotoxin has been achieved broadly through the physical, biological, or chemical course. In view of the steadily increasing volume of scientific literature regarding mycotoxins, there is a need for ongoing integrated knowledge systems. This work revisited the knowledge of mycotoxins affecting oilseeds, food oils, cake, and meals, focusing more on their varieties, toxicity, and preventive strategies, including the methods adopted in the decontamination, which supplement the available information.


Assuntos
Micotoxinas , Humanos , Micotoxinas/análise , Óleos de Plantas , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Fungos , Produtos Agrícolas , Refeições
13.
Polymers (Basel) ; 15(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38139984

RESUMO

This study comprehensively examines recent developments in bio-epoxy resins and their applications in composites. Despite the reliability of traditional epoxy systems, the increasing demand for sustainability has driven researchers and industries to explore new bio-based alternatives. Additionally, natural fibers have the potential to serve as environmentally friendly substitutes for synthetic ones, contributing to the production of lightweight and biodegradable composites. Enhancing the mechanical properties of these bio-composites also involves improving the compatibility between the matrix and fibers. The use of bio-epoxy resins facilitates better adhesion of natural composite constituents, addressing sustainability and environmental concerns. The principles and methods proposed for both available commercial and especially non-commercial bio-epoxy solutions are investigated, with a focus on promising renewable sources like wood, food waste, and vegetable oils. Bio-epoxy systems with a minimum bio-content of 20% are analyzed from a thermomechanical perspective. This review also discusses the effect of incorporating synthetic and natural fibers into bio-epoxy resins both on their own and in hybrid form. A comparative analysis is conducted against traditional epoxy-based references, with the aim of emphasizing viable alternatives. The focus is on addressing their benefits and challenges in applications fields such as aviation and the automotive industry.

14.
Crit Rev Anal Chem ; : 1-14, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133964

RESUMO

Mycotoxins are toxic compounds that are formed as secondary metabolites by some fungal species that contaminate crops during pre- and postharvest stages. Exposure to mycotoxins can lead to adverse health effects in humans, such as carcinogenicity, mutagenicity, and teratogenicity. Hence, there is a need to develop analytical methods for their determination in vegetable oils that possess high sensitivity and selectivity. In the current review (116 references), the recent developments, current challenges, and perspectives in sample preparation techniques and chromatographic determination are summarized. It is impressive that current sample preparation techniques such as dispersive liquid-liquid microextraction (DLLME), quick, easy, cheap, rugged, and safe method (QuEChERS) and solid phase extraction (SPE) have exhibited high extraction recoveries and minimal matrix effects. However, a few studies have reported signal suppression or enhancement. Regarding chromatographic techniques, high sensitivity and selectivity have been reported by liquid chromatography coupled to fluorescence detection, tandem mass spectrometry, or high-resolution mass spectrometry. Furthermore, current challenges and perspectives in this field are tentatively proposed.

15.
Nutr Neurosci ; : 1-8, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37997257

RESUMO

Objectives: This study aimed to assess the contribution of edible/cooking oils and mayonnaise sauce in the severity, motor and non-motor symptoms, and risk of Parkinson's disease (PD).Methods: In this study, 120 patients with PD and 50 healthy individuals participated. The frequency and quantity of edible/cooking oils including animal and plant source oils (hydrogenated and nonhydrogenated) and mayonnaise sauce used by participants were determined using a food frequency questionnaire. The severity of PD was determined by the Unified Parkinson's Disease Rating Scale (UPDRS).Results: Patients with PD had lower use of hydrogenated plant-based oil (HPO) (p < 0.001) and animal oils (p < 0.001) but had higher use of non-hydrogenated plant-based oil (NHPO) (p < 0.001), olive oil (p = 0.02), and mayonnaise sauce (p < 0.001) compared with the healthy subjects. Use of each unit HPO reduced 4% the odds of PD (p = 0.01). The odds of PD increased 20% by each unit increase in NHPO usage (p = 0.001), 49% by olive oil (p = 0.02), and 127% by mayonnaise sauce (p = 0.004) intake. According to receiver operator characteristics curve analysis, mayonnaise sauce and NHPO had the largest area under the curve in predicting PD. Intake of animal oil was positively correlated with total score of UPDRS (p = 0.05) and motor symptoms (p = 0.04). Intake of butter was positively correlated with total score of UPDRS (p = 0.047), nonmotor aspects of experiences of daily living (p = 0.02), and motor examination (p = 0.02).Discussion: The findings indicate that high intake of HPO reduces, while high intake of NHPO, olive oil, and mayonnaise sauce increases the odds of PD.

16.
Biopolymers ; 114(12): e23568, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37846654

RESUMO

Currently, conventional plastics are necessary for a variety of aspects of modern daily life, including applications in the fields of healthcare, technology, and construction. However, they could also contain potentially hazardous compounds like isocyanates, whose degradation has a negative impact on both the environment and human health. Therefore, researchers are exploring alternatives to plastic which is sustainable and environmentally friendly without compromising its mechanical and physical features. This review study highlights the production of highly eco-friendly bioplastic as an efficient alternative to non-biodegradable conventional plastic. Bioplastics are produced from various renewable biomass sources such as plant debris, fatty acids, and oils. Poly-addition of di-isocyanates and polyols is a technique employed over decades to produce polyurethanes (PUs) bioplastics from renewable biomass feedstock. The toxicity of isocyanates is a major concern with the above-mentioned approach. Novel green synthetic approaches for polyurethanes without using isocyanates have been attracting greater interest in recent years to overcome the toxicity of isocyanate-containing raw materials. The polyaddition of cyclic carbonates (CCs) and polyfunctional amines appears to be the most promising method to obtain non-isocyanate polyurethanes (NIPUs). This method results in the creation of polymeric materials with distinctive and adaptable features with the elimination of harmful compounds. Consequently, non-isocyanate polyurethanes represent a new class of green polymeric materials. In this review study, we have discussed the possibility of creating novel NIPUs from renewable feedstocks in the context of the growing demand for efficient and ecologically friendly plastic products.


Assuntos
Isocianatos , Poliuretanos , Humanos , Biopolímeros , Aminas , Biomassa
17.
Molecules ; 28(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37764465

RESUMO

Dyslipidemia presents high levels of serum cholesterol and is characterized as a risk factor for cardiovascular diseases, especially for the development of atherosclerosis. E. oleracea oil (OFEO), A. esculentus oil (OFAE), B. orellana oil (OFBO), and Chronic SM® granules (CHR) are rich in bioactive compounds with the potential to treat changes in lipid metabolism. This study investigated the effects of treatments with oils from A. esculentus, E. oleracea, B. orellana, and Chronic SM® on Cocos nucifera L. saturated-fat-induced dyslipidemia. The chromatographic profile showed the majority presence of unsaturated fatty acids in the tested oils. The quantification of tocotrienols and geranylgeraniol in OFBO and CHR was obtained. Treatments with OFEO, OFAE, OFBO, and CHR were able to significantly reduce glycemia, as well as hypertriglyceridemia, total cholesterol, and LDL-cholesterol, besides increasing HDL-cholesterol. The treatments inhibited the formation of atheromatous plaques in the vascular endothelium of the treated rats. The obtained results suggest that the OFEO, OFAE, OFBO, and CHR exhibit antidyslipidemic effects and antiatherogenic activity.


Assuntos
Abelmoschus , Aterosclerose , Dislipidemias , Euterpe , Ratos , Animais , Ratos Wistar , Bixaceae , Aterosclerose/tratamento farmacológico , Aterosclerose/etiologia , Dislipidemias/tratamento farmacológico , Dislipidemias/etiologia , HDL-Colesterol , Óleos
18.
Materials (Basel) ; 16(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37512249

RESUMO

The unavailability of biodegradable preservatives is one of the major setbacks in the construction industry. With this in mind, our study focused on the analysis and comparison of two hydrophobic liquids, one vegetable oil-based (VOA) and the other mineral oil-based (MOA), and subsequently applying the same on three types of wood. The comparison of the vegetable oil-based (VOA) and mineral oil-based (MOA) hydrophobic liquids revealed that VOA was characterized by an 83.4% susceptibility to aerobic biodegradation, while MOA was considerably more resistant (47.80%). Based on the conducted contact angle measurements, it was observed that the wettability of pine and oak wood decreased after the application of both VOA (for pine-twice; for oak-by 38%) and MOA (for pine-more than two times; for oak-by 49%), while in the case of aspen, the same was increased (after the application of VOA-by 20%; after the application of MOA-by 2%). The observed depth of penetration into the structure of the impregnated wood was lower for the VOA impregnant as compared to the MOA impregnant. This result persisted in all types of wood used in the experiment. Observations of the process of water absorption during soaking revealed that VOA was more beneficial in terms of lowering water absorption into the material, regardless of wood type. The overall results were better for VOA, which lowered the mass of soaked wood by between 19.73 and 66.90%.

19.
Vet Sci ; 10(7)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37505859

RESUMO

The purpose of this quantitative review is to highlight the effects of feeding strategies using some mineral, vitamin, marine oil, and vegetable essential oil supplements and some agri-food by-products to reduce SCCs in the milk of sheep and goats. According to the results, only specific dietary factors at specific doses could reduce SCCs in the milk of dairy sheep and goats. The combination of Se and vitamin E in the diet was more effective in sheep than in goats, while the inclusion of polyphenols, which are also present in food matrices such as agro-industrial by-products, led to better results. Some essential oils can be conveniently used to modulate SCCs, although they can precipitate an off-flavoring problem. This work shows that SCCs are complex and cannot be determined using a single experimental factor, as intramammary inflammation, which is the main source of SC in milk, can manifest in a subclinical form without clinical signs. However, attention to mineral and vitamin supplementation, even in the most difficult cases, such as those of grazing animals, and the use of anti-inflammatory substances directly or through by-products, can improve the nutritional condition of animals and reduce their SCCs, offering undeniable benefits for the milk-processing sector as well.

20.
Foods ; 12(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37509746

RESUMO

The aim of the present work was to improve the stability and bioaccessibility of carotenoids from green oil extracts obtained from papaya by-products using oil-in-water (O/W) emulsions. The effects of different concentrations of pectin (1%, 2%, and 3%), a high-molecular-size emulsifier, together with Tween 20, a low-molecular-size emulsifier, high-speed homogenization conditions (time: 2, 3, 4, and 5 min; rpm: 9500, 12,000, 14,000, and 16,000 rpm), and high-pressure homogenization (HPH) (100 MPa for five cycles) were evaluated to determine the optimal conditions for obtaining O/W stable emulsions with encapsulated carotenoids. Soybean, sunflower, and coconut oils were used to formulate these O/W emulsions. The bioaccessibility of the main individual encapsulated papaya carotenoids was evaluated using the INFOGEST digestion methodology. In addition, the microstructures (confocal and optical microscopy) of the O/W carotenoid emulsions and their behavior during in vitro digestion phases were studied. Sunflower O/W carotenoid emulsions showed smaller mean particle size, higher negative ζ-potential, and higher viscosity than soybean O/W emulsions. Particle size reduction in the O/W emulsions using the HPH process improved the bioaccessibility of papaya encapsulated carotenoids. In these O/W emulsions, depending on the vegetable oil, lycopene was the carotenoid with the highest bioaccessibility (71-64%), followed by (all-E)-ß-carotene (18%), (all-E)-ß-cryptoxanthin (15%), and (all-E)-ß-cryptoxanthin laurate (7-4%). These results highlight the potential of using green carotenoid papaya extracts to formulate O/W emulsions to enhance carotenoid bioactivity by efficiently preventing degradation and increasing in vitro bioaccessibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...